

Analyses of selected organic contaminants and metals in drinking bottles

Technical report

Pawel Rostkowski, Hilde T. Uggerud, Mikael Harju, Vladimir Nikiforov, Anders Borgen, Alfhild Kringstad, Morten Bjørklund, Silje Thomassen, Marit Vadset, Mebrat Ghebremeskel, Heidi Eikenes, Malcolm Reid

NILU report 22/2018	ISBN: 978-82-425-2941-1	CLASSIFICATION:
		А
DATE	SIGNATURE OF RESPONSIBLE PERSON	NUMBER OF PAGES
21.08.2018	Kari Nygaard (sign.)	24
TITLE		PROJECT LEADER
Analyses of selected organic contaminar	nts and metals in drinking bottles	Pawel Rostkowski
Technical report		NILU PROJECT NO.
	0-117124	
AUTHOR(S) Pawel Rostkowski, Hilde T. Uggerud, Mi	QUALITY CONTROLLER	
Alfhild Kringstad, Morten Bjørklund, Ghebremeskel, Heidi Eikenes, Malcolm	Martin Schlabach	
	id, Mikael Harju, Vladimir Nikiforov, Anders	
Borgen, Morten Bjørklund, Silje Thomas Heidi Eikenes	sen, Marit Vadset, Mebrat Ghebremeskel,	
NIVA: Alfhild Krigstad, Malcolm Reid		
REPORT PREPARED FOR	CONTRACT REF.	
Norwegian Consumer Council (Forbruke		
ARCTRACT		<u> </u>

ABSTRACT

On behalf of Norwegian Consumer Council NILU has conducted analyses of organic contaminants and metals in the leachate from selected drinking bottles. The simulation of the leakage is conducted based on a compilation of the methods described within NS-EN-1186-9 and NS-EN-13130-1. The instrumental analytical methods used were already established at NILU and NIVA. A number of different organic contaminants and metals have been found in trace amounts in the different products.

NORWEGIAN TITLE

Analyse av utvalgte miljøgifter og metaller i drikkeflasker og kaffekopper

KEYWORDS

Environmental contaminants Heavy metals Elements

ABSTRACT (in Norwegian)

NILU har på vegne av Forbrukerrådet bestemt innholdet av organiske forurensninger og tungmetaller i utlekkingsvæske fra utvalgte drikkeflasker. Simuleringen av lekkasjen er basert på en sammenstilling av metodene beskrevet i NS-EN-1186-9 og NS-EN-13130-1. De instrumentelle analysemetodene som ble benyttet var allerede etablert hos NILU og NIVA. En rekke forskjellige organiske forurensninger og metaller har blitt funnet i spormengder i de ulike produktene.

PUBLICATION TYPE: Digital document (pdf)	COVER PICTURE:	Source: NILU
1 oblief (11 et al. algital accument (par)	COVERTICIONE.	3041001 11120

© NILU – Norwegian Institute for Air Research

The publication may be freely cited where the source is acknowledged

NILU's ISO Certifications: NS-EN ISO 9001 and NS-EN ISO 14001. NILU's Accreditation: NS-EN ISO/IEC 17025.

Preface

Norwegian Consumer Council was interested in checking for possible leakage of potential harmful substances from drinking bottles that could be drunk by Norwegian consumers.

The aim of the project was to test out for leakage of selected organic contaminants and metals in bottles provided for analyses.

The simulation of the leakage is conducted based on a compilation of the methods described within NS-EN-1186-9 and NS-EN-13130-1.

Analyses of different compounds were conducted with methods established in NILU and NIVA laboratories.

Contents

Pre	eface	2
Su	mmary	4
1	Introduction	5
2	Materials and Methods	5
	2.1 Samples	5
	2.2 Compounds tested	5
	2.2.1 Organic contaminants	5
	2.2.2 Metals	16
	2.3 Methods	17
	2.3.1 Organic contaminants	17
	2.3.2 Metals	17
3	Results	18
	3.1 Analytical uncertainty	18
	3.2 Concentrations of phenolic compounds	18
	3.3 Concentrations of selected phthalates	18
	3.4 Concentrations of selected organophosphorus flame retardants	19
	3.5 Concentrations of selected UV-filters	20
	3.6 Chlorinated paraffins	21
	3.7 New brominated flame retardants and hexachlorocyclohexane	21
	3.8 Metals	22
4	Summary	24

Summary

On behalf of Norwegian Consumer Council NILU has conducted analyses of organic contaminants and metals in the leachate from selected drinking bottles. The simulation of the leakage was conducted based on a compilation of the methods described within NS-EN-1186-9 and NS-EN-13130-1. The instrumental analytical methods used were already established at NILU and NIVA. A number of different organic contaminants and metals have been found in trace amounts in the different products.

Analyses of selected organic contaminants and metals in drinking bottles

Technical report

1 Introduction

The project was conducted as described in the offer that was sent to Norwegian Consumer Council on 20.12.2017, Nets nr. 1303 and that was accepted a day after. 11 different drinking bottles from various suppliers were purchased in different stores by the staff of Norwegian Consumer Council and delivered to NILU in January 2018. The aim of the project was to test out for leakage of selected organic contaminants and from the bottles provided for analyses. The simulation of the leakage was conducted based on the compilation of the methods described within NS-EN-1186-9 and NS-EN-13130-1.

All analyses of the different compounds were conducted with methods established at NILU, except for UV-filters that were analysed by NIVA.

2 Materials and Methods

2.1 Samples

In order to effectively conduct different analyses in laboratories in different locations, 11 drinking bottles were purchased in December 2017 and delivered in triplicate. A total of 33 bottles were delivered to NILU. Details are described in Table 1. One of the triplicated samples delivered was used for analyses of metals in NILU laboratory in Kjeller, while another two for organic analyses in NILUs laboratories in Kjeller and Tromsø, respectively.

Table 1: Information about bottles subjected to analyses

No	Shop	Location of purchase
1	XXL	Alna center
2	G- Sport	Alna center
3	Ikea	Furuset
4	Nille	Jernbanetorget
6	Jernia	Strøget
7	Biltema	Alna center
8	Rusta	Alna
9	Europris	Lindeberg
10	Coop Obs	Alna
12	ToysRus	Alna center
13	Clas Ohlson	Alna center

2.2 Compounds tested

2.2.1 Organic contaminants

Details about the contaminants tested are included in tables 2-5.

Table 2: Selected flame retardants and chlorinated paraffins

Name	Chemical name	CAS number	Structure
	Organophosi	ohorus flame	retardants
ТСЕР	Tris(2-chloroethyl) phosphate	115-96-8	CI
ТСРР	Tris(1-chloro-2-propyl) phosphate	13674- 84-5	
TDCPP	Tris(1,3-dichloro-2- propyl)phosphate	13674- 87-8	CI CI CI CI CI CI
ТВЕР	tris-(2-butoxyethyl)-phosphate	78-51-3	
EHDPP	2-ethylhexyl diphenyl phosphate	1241-94- 7	
ТСР	Tricresyl phosphate	1330-78- 5	

Name	Chemical name	CAS number	Structure
TnBP	Tri-n-butyl phosphate	126-73-8	
TiBP	Tri-iso-butyl phosphate	126-71-6	
ТРР	Triphenyl phosphate	115-86-6	
ТЕНР	tris(2-ethylhexyl)phosphate	78-42-2	
ТЕР	Triethyl phosphate	78-40-0	
ТХР	Trixylenyl Phosphate	25155- 23-1	

Name	Chemical name	CAS number	Structure
	New bromi	nated flame i	retardants
ВЕНТВР	Bis(2- ethylhexyl)tetrabromophthalate	26040- 51-7	Br O O O O O O O O O O O O O O O O O O O
ЕНТВВ	2-Ethylhexyl-2,3,4,5- tetrabromobenzoate	183658- 27-7	Br Br O
НВВ	Hexabromobenzene	87-82-1	Br Br Br
РВТ	Pentabromotoluene	87-83-2	Br Br Br
PBBZ	Pentabromobenzene	608-90-2	Br Br Br
DBDPE	Decabromodiphenylethane	84852- 53-9	Br Br Br Br
ВТВРЕ	1,2-Bis(2,4,6- tribromophenoxy)ethane	37853- 59-1	Br Br Br
α-TBECH	α-Tetrabromoethylcyclohexane	1232836- 48-4	
B-TBECH	B-Tetrabromocyclohexane	1232836- 49-5	

Name	Chemical name	CAS number	Structure
g/d-TBECH	/d-TBECH Γ/δ- Tretrabromocyclohexane		Br Br
ATE (TBP- AE)	2,4,6-tribromophenyl allyl ether	3278-89- 5	Br Br
PBEB	Pentabromoethylbenzene	85-22-3	Br Br Br
Dechloran e Plus (syn/anti)	1,4:7,10- Dimethanodibenzo[a,e]cycloocte ne	135821- 03- 9/135821 -74-8	CI C
Chlorinated paraffins			
SCCP	Short chain chlorinated paraffins	85535- 84-8	Group of compounds, not a single structure
МССР	Medium chain chlorinated paraffins	85535- 85 -9	Group of compounds, not a single structure

Table 3: Selected phthalates

Name	Chemical name	CAS number	Structure
DMP	Dimethylphthalate	131-11-3	
DEP	Diethylphthalate	84-66-2	
DiBP	diisobutyl phthalate	84-69-5	
DBP	di-n-butyl- phthalate	84-74-2	
ВМРР	Bis(4-metyl-2- pentyl) phthalate	84-63-9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ВМЕР	Bis(2-metoxyethyl) phthalate	117-82-8	
BEEP	Bis(2-etoxyethyl) phthalate	605-54-9	

Name	Chemical name	CAS	Structure
Name	Chemicarname	number	Structure
DPP	Dipentyl phthalate	131-18-0	0
		_	ő
DHXP	di-n-hexyl phthalate	84-75-3	0
	pritrialate		
			II O
BBP	benzyl butyl	85-68-7	
	phthalate		Ĭ II
			Ó /
BnBP	Bis(2- <i>n</i> -	117-83-9	0
	butoxyethyl)		
	phthalate		
25.12	/- ·· ·· ··		
DEHP	Bis(2-ethylhexyl) phthalate	117-81-7	
	prictialate		
DCHP	dicyclohexyl phthalate	84-61-7	
	pritrialate		
DOP	di-n-octyl	117-84-0	°
	phthalate		
DNP	di-nonyl phthalate	84-76-4	
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

Table 4: Selected phenolic compounds and alkylphenol ethoxylates

Name	CAS number	Structure
Bisphenol A	80-05-7	но
2,4'-Bisphenol A	837-08-1	ОН
Bisphenol B	77-40-7	но
Bisphenol C	79-97-0	но
Bisphenol E	2081-08-5	но
2,2'-Bisphenol F	2467-02-9	OH OH
2,4'-Bisphenol F	2467-03-0	ОН
4,4-Bisphenol F	620-92-8	но
Bisphenol G	127-54-8	но

Bisphenol M	13595-25-0	
Bisphenol P	2167-51-3	но Он
Bisphenol S (4,4')	80-09-1	но
2,4'-Bisphenol S	5397-34-2	он он
Bisphenol Z	843-55-0	но
Bisphenol AF	1478-61-1	HO F F F
Bisphenol AP	1571-75-1	но
Bisphenol BP	1844-01-5	НО
Bisphenol FL	3236-71-3	НО

Bisphenol PH	24038-68-4	но
Bisphenol TMC	129188-99-4	НО
		но
Tetrabromobisphenol A	79-94-7	
		Br Br OH
		Br Br
Octylphenol monoethoxylate (OPEO- 1)	2315-67-5	
		но
Octylphenol diethoxylate (OPEO-2)	2315-61-9	3 2 OH OH
		5 1
Nonylphenol monoethoxylate (NPEO- 1)	104-35-8	ОН
Nonylphenol diethoxylate (NPEO-2)	20427-84-3	OH
diethoxylate (M 20 2)		
Triclosan	3380-34-5	OH CI
		CI

Table 5: Selected benzotriazole based UV-filters

Name	CAS number	Structure
2-ethylhexyl-4- Dimethylaminobenzoate (ODPABA)	21245-02-3	
Benzophenone 3 (BP3)	131-57-7	OH OH
Ethylhexylmethoxycinnamate (EHMC)	5466-77-3	
Octocrylene (OC)	6197-30-4	N O O O O O O O O O O O O O O O O O O O
UV-327	3864-99-1	HO N N N
UV-329	3147-75-9	N HO
UV-328	25973-55-1	HO NO
UV-320	3846-71-7	HO N N N N N N N N N N N N N N N N N N N
UV-326	3896-11-5	OH CI
UV-928	73936-91-1	N HO

2.2.2 Metals

Following metals were quantified in extracts:

- Aluminum (Al)
- Antimony (Sb)
- Arsenic (As)
- Beryllium (Be)
- Lead (Pb)
- Gallium (Ga)
- Germanium (Ge)
- Cadmium (Cd)
- Cobalt (Co)
- Copper (Cu)
- Chromium (Cr)
- Mercury (Hg)
- Molybdenum (Mo)
- Nickel (Ni)
- Zinc (Zn)
- Silver (Ag)
- Thallium (TI)
- Tellurium (Te)
- Tin (Sn)
- Vanadium (V)

2.3 Methods

2.3.1 Organic contaminants

To avoid contamination and possible false identifications, all the bottles were thoroughly rinsed with ultra-pure Milli-Q water prior to extraction.

Drinking bottles were filled with MilliQ-water again and extracted in 40 °C for 24-hours.

After 24-hrs, the extracts containing possible leachate were spiked with mixtures of isotopically labelled standards and subjected for further cleanup and concentration suitable to different type of analyses (liquid-liquid and/or solid phase extraction).

To avoid possible false positives in analytical results due to contamination in the laboratory, lab blank samples were prepared with each batch of processed samples. In brief, clean glass containers were treated exactly the same way as drinking bottles.

The final extracts were subjected to analyses with either gas or liquid-chromatography high resolution mass spectrometry.

2.3.2 *Metals*

To avoid contamination and possible false identifications, all the bottles were thoroughly rinsed with ultra-pure Milli-Q water prior to extraction.

Drinking bottles were filled with acetic acid diluted in MilliQ-water to 3% and extracted in 40 °C for 24-hours.

The extracts were analyzed by use of inductively coupled plasma mass spectrometry (ICP-MS) (Agilent 7700x). The calibration standards were matrix matched with 3% acetic acid. ¹¹⁵In was used as internal standard and added to all calibration standards, blank samples and extracts during analysis.

3 Results

3.1 Analytical uncertainty

Due to the lack of available certified reference materials, replicated samples were analysed. The methods used are validated, but not accredited and analytical uncertainty for organic contaminants measured in this study has been established at the level of 60%. Although it appears to be somewhat high, for comparison, typical uncertainty in established accredited analyses of persistent organic pollutants in environmental matrices is at the level of 30-40%. Uncertainty for metals in this study was established at the level of 35%.

3.2 Concentrations of phenolic compounds

51 ng/kg of Octylphenol monoethoxilate (OPEO-1) was detected in a drinking bottle from Toys R Us. Concentration of nonylphenol monoethoxylate (NPEO-1) was lower (37 ng/kg). Octylphenol diethoxylate was found only in a drinking bottle from Toys R Us. In all other samples the levels of alkylphenol ethoxylates were below 10ng/kg.

Several other phenolic contaminants have been detected and are presented in Table 6.

Table 6: Selected phenolic contaminants found in leachate from drinking bottles (ng/kg). Note: to facilitate presentation only compounds detected in at least one of the samples are presented. Limits of detection (LOD) for all bisphenols from table 4 were established at 1ng/kg and for triclosan at 0.6 ng/kg.

Type of the	Details	bisphenol	(4,4')-	(2,4')-	(2,2')-	bisphenol	bisphenol	triclosan
container		Α	bisphenol	bisphenol	bisphenol	AF	S	
			F	F	F			
bottle	XXL	<1	<1	4	<1	<1	<1	<0.6
bottle	G-Sport	52	<1	<1	<1	<1	<1	<0.6
bottle	Ikea	<1	<1	<1	<1	<1	<1	<0.6
bottle	Nille	44	<1	<1	<1	<1	<1	<0.6
bottle	Jernia	6	7	9	2	<1	<1	<0.6
bottle	Biltema	16	4	5	1	<1	2	<0.6
bottle	Rusta	<1	7	9	1	8	<1	<0.6
bottle	Europris	9	<1	<1	<1	<1	0	<0.6
bottle	Coop Obs	<1	4	4	<1	<1	<1	<0.6
bottle	Toys R Us	13	8	4	1	8	<1	0.8
bottle	Clas Ohlson	<1	8	4	<1	<1	<1	<0.6

3.3 Concentrations of selected phthalates

Limits of detection for selected phthalates that were not detected in the samples are presented in Table 7, while the concentrations of phthalates (ng/kg) found in the samples are presented in Table 8.

Table 7: Limits of detection for analysed phthalates (ng/kg).

Name	Type	BMEP	BMPP	BEEP	DPP	DHXP	DCHP/DEHP	DOP	DNP
LOD	bottle	491	44.2	302	5.4	17.2	45.8	11.2	172

Table 8: Concentrations of phthalates in a leachate from drinking bottles (ng/kg). Note: To facilitate presentation only compounds detected in at least one of the samples are presented.

Type of the container	Details	DMP	DEP	DiBP	DBP	ВВР	DCHP/DEHP
bottle	XXL	<24.8	113	<5.5	55.5	<136	<45.8
bottle	G-Sport	<24.8	358	<5.5	66.9	<136	<45.8
bottle	Ikea	<24.8	<35.8	<5.5	<24.1	<136	<45.8
bottle	Nille	<24.8	<35.8	<5.5	60.7	<136	<45.8
bottle	Jernia	<24.8	<35.8	25.6	90.7	<136	<45.8
bottle	Biltema	206	<35.8	19.4	103	<136	<45.8
bottle	Rusta	<24.8	<35.8	25.8	91.0	<136	<45.8
bottle	Europris	<24.8	1038	<5.5	48.0	<136	<45.8
bottle	Coop Obs	<24.8	<35.8	<5.5	<24.1	<136	<45.8
bottle	Toys R Us	<24.8	569	1222	1100	845.0	<45.8
bottle	Clas Ohlson	<24.8	172	72.2	147	<136	<45.8

3.4 Concentrations of selected organophosphorus flame retardants

Several organophosphorus flame retardants have been detected in the samples (Table 10). Limits of detection for those not being detected are presented in Table 9.

Table 9: Limits of detection for selected organophosphorus flame retardants

	TPrP	BdPhP	DBPhP	TDCPP	TCP	EHDP	TXP	TIPPP	TTBPP	TEHP
bottle	1.82	0.72	0.34	3.61	4.54	1.88	2.52	0.23	0.30	0.52

Table 10: Concentrations of organophosphorus flame retardants in a leachate from drinking bottles (ng/kg). Note: to facilitate presentation only compounds detected in at least one of the samples are presented.

Type of the container	Details	TEP	TCEP	TCPP	TiBP	TnBP	TPP	TBEP
bottle	XXL	<9.23	<13.1	<15.3	<72.6	<2.22	<0.4	<58.8
bottle	G-Sport	<9.23	32.3	105.5	<72.6	<2.22	<0.4	<58.8
bottle	Ikea	<9.23	<13.1	<15.3	<72.6	<2.22	<0.4	<58.8
bottle	Nille	<9.23	<13.1	<15.3	<72.6	<2.22	<0.4	<58.8
bottle	Jernia	<9.23	<13.1	<15.3	<72.6	<2.22	<0.4	<58.8
bottle	Biltema	27.5	<13.1	<15.3	<72.6	<2.22	36.7	<58.8
bottle	Rusta	<9.23	<13.1	<15.3	<72.6	<2.22	1435	<58.8
bottle	Europris	<9.23	<13.1	<15.3	<72.6	<2.22	<0.4	<58.8
bottle	Coop Obs	<9.23	<13.1	<15.3	<72.6	<2.22	<0.4	<58.8
bottle	Toys R Us	16.3	62.3	643	<72.6	121	<0.4	1393
bottle	Clas Ohlson	25.1	<13.1	<15.3	<72.6	<2.22	<0.4	<58.8

3.5 Concentrations of selected UV-filters

Analyses of benzotriazole based UV-filters revealed presence of BP3 only in leachate drinking bottle from Toys R Us (31 ng/kg)..

The levels of UV-filters were under limits of detection (see Table 11) for all other samples.

Table 11: Limits of detection for selected UV-filters for all samples tested in this study (ng/kg).

Type of container	BP3	ODPABA	UV-320	UV-326	UV-329	UV-328	UV-327	OC	Sum EHMC
drinking bottles	3-6	0.1-0.2	0.1-0.2	0.5-1	1-2	0.2-0.4	0.1-0.3	20-50	15-40

3.6 Chlorinated paraffins

Concentrations of chlorinated paraffins are presented in Table 12.

Table 12: Concentrations of chlorinated paraffins

Type of the container	Details	SCCP (ng/kg)	MCCP (ng/kg)
drinking bottle	XXL	<265	154
drinking bottle	G-Sport	<270	76
drinking bottle	Ikea	<274	69
drinking bottle	Nille	<206	152
drinking bottle	Jernia	<563	112
drinking bottle	Biltema	<378	375
drinking bottle	Rusta	<397	90
drinking bottle	Europris	<263	65
drinking bottle	COOP Obs	<236	116
drinking bottle	Toys R Us	<406	98
drinking bottle	Clas Olson	<232	47

3.7 New brominated flame retardants and hexachlorocyclohexane

Only DBDPE and isomers of hexachlorocyclohexane were detected in some of the samples (Table 13). Other brominated flame retardants were not detected (with LOD< 0.2-0.5 ng/kg).

Table 13: Concentrations of new brominated flame retardants and hexachlorocyclohexane in a leachate from drinking bottles (ng/kg). Note: to facilitate presentation only compounds detected in at least one of the samples are presented.

Type of container	details	a-HCH	b-HCH	g-HCH	DBDPE
bottle	XXL	0.12	<0.01	0.05	<2
bottle	G-Sport	0.12	<0.01	0.08	<2
bottle	Ikea	0.02	<0.01	0.04	<2
bottle	Nille	0.01	<0.01	<0.01	5.28
bottle	Jernia	0.04	<0.01	0.07	16.93
bottle	Biltema	<0.01	<0.01	0.06	40.69
bottle	Rusta	<0.01	<0.01	0.04	25.71
bottle	Europris	<0.01	<0.01	<0.01	2.79
bottle	Coop Obs	<0.01	<0.01	<0.01	<2
bottle	Toys R Us	0.05	0.04	0.24	5.21
bottle	Clas Ohlson	<0.01	<0.01	47.1	12.38

3.8 Metals

Germanium, silver (LODs = 10 ng/kg), arsenic (LOD = 50 ng/kg), tellurium, thallium and bismuth (LODs = 5 ng/kg) were not detected in any of the samples. Concentrations of other metals are presented in table Table 14.

Table 14: Results of analyses of metals (ng/kg). Note: to facilitate presentation only compounds detected in at least one of the samples are presented.

Type of the container	details	Be	Al	V	Cr	Со	Ni	Cu	Zn	Ga	Мо	Cd	Sn	Sb	Те	Pb
Drinking bottle	XXL	<5	5306.78	<5	<50	<4	<20	17.71	3085.06	<50	<10	<5	<50	<3	<5	15.64
Drinking bottle	G-Sport	7.74	<1000	<5	<50	<4	<20	511.89	129.71	<50	<10	<5	<50	<3	<5	<9
Drinking bottle	IKEA	<5	<1000	<5	<50	<4	<20	<10	133.81	<50	<10	<5	<50	<3	<5	<9
Drinking bottle	Jernia	<5	7590.40	38.37	1259.22	31.22	273.98	234.01	816.63	6437.04	37.37	<5	<50	11.64	<5	28.92
Drinking bottle	Biltema	<5	3033.82	7.43	65.54	<4	1248.26	141.65	9776.01	323.49	<10	<5	<50	3.48	<5	93.44
Drinking bottle	Rusta	<5	<1000	<5	<50	<4	<20	<10	1376.90	<50	<10	<5	<50	6.38	<5	<9
Drinking bottle	Europris	<5	<1000	<5	<50	<4	<20	39.83	417.62	<50	<10	<5	66.91	<3	<5	14.67
Drinking bottle	COOP obs	<5	<1000	6.91	<50	<4	<20	<10	142.73	<50	<10	<5	<50	<3	<5	<9
Drinking bottle	ToysRus	<5	<1000	5.06	<50	7.07	<20	89.12	1447.81	<50	<10	<5	<50	14.32	<5	143.63
Drinking bottle	Clas Ohlson	<5	<1000	<5	<50	<4	<20	<10	<100	<50	<10	<5	<50	<3	<5	<9

4 Summary

A number of different environmental organic contaminants and metals have been found in trace amounts in selected commercial drinking bottles. As this is a data report only, the obtained results were neither compared with other reports nor discussed further.

NILU - Norwegian Institute for Air Research

NILU – Norwegian Institute for Air Research is an independent, nonprofit institution established in 1969. Through its research NILU increases the understanding of climate change, of the composition of the atmosphere, of air quality and of hazardous substances. Based on its research, NILU markets integrated services and products within analyzing, monitoring and consulting. NILU is concerned with increasing public awareness about climate change and environmental pollution.

NILU's values: Integrity - Competence - Benefit to society

NILU's vision: Research for a clean atmosphere

NILU – Norwegian Institute for Air Research P.O. Box 100, NO-2027 KJELLER, Norway

E-mail: nilu@nilu.no http://www.nilu.no

ISBN: 978-82-425-2941-1

